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Neutron diffraction provides a direct probe for the ordering of spins from unpaired electrons in
materials with magnetic properties. The ordering of the spins can be modeled in many cases by
adding spin directions to standard crystallographic models. This requires, however, that
crystallographic space groups be extended by addition of a “color” attribute to symmetry operations,
which determines if the operation maintains or flips the direction of a magnetic spin. Rietveld
analysis provides a mechanism for fitting magnetic structure models to powder diffraction data. The
general structure and analysis system (GSAS) software suite is commonly used for Rietveld analysis
and includes the ability to compute magnetic scattering. Different approaches are commonly used
within GSAS to create models that include magnetism. Three equivalent but different approaches
are presented to provide a tutorial on how magnetic scattering data may be modeled using
differing treatment of symmetry. Also discussed is how magnetic models may be visualized.
The commands used to run the GSAS programs are summarized within, but are shown in

great detail in
Data. [DOI: 10.1154/1.2179805]

supplementary web pages. © 2006 International Centre for Diffraction
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I. INTRODUCTION

Neutrons are extremely valuable as a probe of materials
structure. Neutrons are scattered by atomic nuclei and typi-
cally have better sensitivity to light atoms than X rays, which
are scattered by electrons. Further, nuclear scattering cross
sections for neutron scattering do not vary with sin 6/\, so
neutrons provide scattering information over a wider diffrac-
tion range than X rays. However, neutrons also have a non-
zero spin and this causes them to be scattered by the spin of
unpaired electrons, when such electrons are present. When
materials exhibit magnetic properties, this is typically due to
long-range ordering of these unpaired electrons; in these
cases, neutrons will be scattered coherently from the elec-
trons in the ordered domains, just as neutrons are scattered
by the nuclei of atoms. The terms nuclear scattering and
magnetic scattering (better labels would be nuclear diffrac-
tion and magnetic diffraction) are used to separate diffraction
from atoms versus unpaired electrons. The contributions are
assigned as arising from the “nuclear structure” and “mag-
netic structure,” respectively. While, as noted before,
nuclear-scattering cross sections are constant, magnetic-
scattering cross sections decrease with sin 6/, similar to
X-ray scattering, though form factors differ since X rays
scatter from all electrons, while magnetic scattering of neu-
trons occurs from valence electrons. The fact that neutrons
have a relatively strong interaction with unpaired electrons
increases their value considerably as a probe of magnetic
materials.

The ability to model both nuclear and magnetic struc-
tures in powder diffraction data was central to the develop-
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ment of the Rietveld technique. Hugo Rietveld’s initial Algol
program for full profile fitting was able to model both
nuclear and magnetic structures (Rietveld, 1969). However, a
description of magnetic ordering requires more sophistica-
tion than what is needed for structural descriptions. It should
be mentioned, however, that powder diffraction can be of
limited power in determining the details of magnetic order-
ing, due to overlap of symmetry-related reflections. For ex-
ample, in a tetragonal system, the powder diffraction pattern
arising from a set of atoms with moments in the a [or (100)]
direction will be identical to that where the moments are in
the a+b [or (110)] direction. In fact, rotating the spin ar-
rangement to any angle in the ab plane will leave the powder
diffraction intensities unchanged (Shirane, 1959). Only
single crystal measurements will demonstrate a difference
between the two models.

To describe the spin direction associated with an atom,
two different conventions are used. Frequently, the spin is
considered as an ordinary (polar) vector, where the vector
magnitude is equal to the spin moment. For magnetic sym-
metry, an alternate approach is used, where the spin is de-
scribed as an axial vector associated with a current loop. In
this case, the axial vector direction is normal to the plane of
the loop and by convention points toward a viewer who sees
the loop rotation in the clockwise direction. These two ways
of describing a vector differ when the application of symme-
try is considered. As an example, a center of symmetry will
invert the direction of a polar vector, but not the direction of
rotation of a current loop; however, while the position of an
axial vector will be changed by a center of symmetry, the
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Figure 1. The effect of a center of symmetry (indicated by the filled circle)
on (A) a polar vector and (B) an axial vector. Note that the loop direction
associated with the axial vector remains clockwise after inversion, so the
vector direction is unchanged. By contrast, the center inverts the direction of
the polar vector.

direction of an axial vector will not be changed. This is il-
lustrated in Figure 1. By contrast, a rotation axis will invert
the direction of an axial vector, but not a polar vector. Good
illustrations showing the effect of other classes of symmetry
operations on axial vectors can be found in literature (Don-
nay ef al., 1958; Cox, 1972).

For treatment of the symmetry of magnetic systems, tra-
ditional crystallographic space group theory is extended us-
ing color or Shubnikov (also called Heesch) space-group
theory (Heesch, 1930; Shubnikov and Belov, 1964; Vainsh-
tein, 1996). Traditional crystallographic symmetry operations
treat objects as collections of points, and the only effect of a
symmetry operation on a point can be to displace it, since a
point has no directionality. Complex objects can be consid-
ered as a collection of points; the effect of crystallographic
symmetry on the object is the same as would be obtained by
transforming each constituent point individually. Color space
group theory adds extra rules for treating the direction asso-
ciated with magnetic vectors. The effect of a color symmetry
operation on a magnetic vector may thus be different from
the effect of that operator on an object. Magnetic symmetry
operations are given an additional attribute, a “color”—either
red or black—where a “black” operation applies symmetry
directly to the vector; while a “red” operation applies the
same symmetry, but also adds a spin inversion and thus gives
the opposite spin direction of the black. The spin flip per-
formed by a red operation is sometimes referred to as “time
reversal.” The prefix “anti-” is commonly applied to differ-
entiate red operators from black ones, so that a red mirror
plane would be labeled as an antimirror, etc.

By convention, the effect of color symmetry is defined
by action on axial vectors, not polar vectors. As noted be-
fore, a black center of symmetry does not change the direc-
tion of an axial vector, so a red center of symmetry will
reverse this direction. Color space group theory also allows
lattice-centering operations to be red or black. While tradi-
tional Bravais lattices only allow for body and face center-
ing, color space groups also allow anticentering on cell
edges, as this simplifies treatment of lattice doubling, as oc-
curs in simple antiferromagnetic systems.
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Not all combinations of color symmetry operations are
internally consistent; but for most of the 230 standard crys-
tallographic space groups, there will be more than one choice
for how to apply color. This, plus the additional centering,
results in 1651 color space groups. Color space groups are
named using the standard Hermann—Maugin name for the
base space group, except that red operations that appear in
the space group name are marked with an apostrophe (*). For
example, the color space-group Pm’mm has the same sym-
metry operations as the standard Pmmm space group except
that the m’mm indicates that the mirror plane perpendicular
to a is red while the mirror planes perpendicular to b and ¢
are black.

It is worth noting that magnetic ordering frequently
breaks the symmetry of the nuclear structure, but in many
cases, the lattice and nuclear structure parameters for such
systems often remain unchanged from the higher symmetry,
within the precision of all experimental technique measure-
ments. For example, consider a tetragonal material where all
magnetic moments are aligned in any one direction in the a-
b plane. This magnetic ordering breaks tetragonal symmetry
since this ordering is inconsistent with a four-fold axis; the
resulting magnetic structure will thus be orthorhombic.
Nonetheless, the nuclear structure may retain four-fold sym-
metry. For this reason, it is often necessary to constrain the
nuclear structure to higher symmetry than the magnetic
structure, leading to potential complexity in performing mag-
netic refinements.

It should be noted that in real life, far more complex
things may happen than mere lattice doubling: The spin or-
dering may repeat over longer length scales, or the nuclear
and magnetic lattices may be incommensurate. An alternate
description of magnetic ordering that derives from a treat-
ment of symmetry, known as representational analysis pro-
vides a more comprehensive mechanism for modeling mag-
netic structures (Kovalev, 1993; Iziumov and Syromiatnikov,
1990). In this method, magnetism is described in terms of a
magnetic propagation vector and the irreducible representa-
tions (irreps) that comprise the space group. A number of
software tools, notably MODY (Sikora et al., 2004), SARAh
(Wills, 2000), ISOTROPY (Stokes and Hatch, 2002), and
BasiReps (Rodriguez-Carvajal, 2004) are available for ex-
ploring magnetic symmetry. Indeed, representional analysis
combined with Landau theory can be used to tabulate all
possible magnetic structures for a system (Wills, 2002). The
FullProf package implements irreps for modeling magnetic
systems and thus is probably the tool of first choice for use
by experts (Rodriguez-Carvajal, 1993). The level of group
theory needed for this approach is well beyond the scope of
this article, alas.

This article is intended as a practical guide on how mag-
netic Rietveld refinements are performed with neutron pow-
der diffraction data using the Generalized Structure and
Analysis System (GSAS) suite of Rietveld software (Larson
and Von Dreele, 2000) and where possible using the
EXPGUI graphical user interface (Toby, 2001). Together,
GSAS and EXPGUI are widely used for Rietveld refinement
(Fultz and Billinge, 2004). When a magnetic structure is
modeled in GSAS, all standard crystallographic symmetry
operations can be flagged as either red or black. However,
GSAS does not implement edge centering at present.
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(Experienced GSAS users may remember an option for lat-
tice doubling operations that effectively allowed direct rep-
resentation of color space groups. Due to problems with the
implementation of lattice doubling, the feature has been dis-
abled). Different approaches are used within GSAS to model
nuclear and magnetic structures. This paper will present
three different approaches for a single system. In one ex-
ample, a single model will be used to describe both the mag-
netic and crystallographic scattering, adapting the nuclear
model to fit the symmetry to that of the magnetic model. In a
second example, the nuclear and magnetic models will be
treated separately, each using the symmetry appropriate to
that model. In a third example, only lattice symmetry opera-
tions are used to describe the magnetic model. This latter
approach may be abhorrent to the crystallographer, but is
often convenient to the physicist who wishes to explore pos-
sible magnetic models without deriving the corresponding
symmetry. The specific details for performing each step is
shown in an accompanying set of web pages.

As is the case with determining starting models for Ri-
etveld refinements of crystal structures, determining trial
models for magnetic structures is a complex problem, some-
times solved through analogy to related systems, intuition,
modeling, analysis software, or trial and error approaches.
The goal of this paper is to show how models may be tested
and refined, but does not explore how they are derived.

Il. EXPERIMENTAL DATA AND STARTING
MODELS

A. Neutron diffraction data

The example data used in this document were collected
on a sample of YBa,Fe;Og at room temperature using the
high-resolution neutron powder diffractometer, BT-1, at
NIST. Details of sample preparation and neutron diffraction
measurements, including a more complete discussion of the
original crystallographic analysis, can be found elsewhere
(Huang et al., 1992; Karen et al., 2003).

B. Approximate nuclear structure of YBa,Fe;04

The nuclear structure of YBa,Fe;Oyg is depicted in Fig-
ure 2. The crystallographic data and fractional coordinates of
the atoms are listed in Table I.

X

Figure 2. Nuclear structure of YBa,Fe;Og.

C. Trial magnetic structure of YBa,Fe;0g

YBa,Fe;Oq is antiferromagnetic at room temperature. A
proposed model has the magnetic moments on the iron atoms
with alternating spins of equal magnitude, either parallel or
antiparallel to the a axis of the nuclear cell, with spin direc-
tions as illustrated in Figure 3. While this model appears to
have a fairly simple and small unit cell, this is misleading
because there are two inequivalent planes of iron atoms (Fel
versus Fe2). Figure 4 shows a section of the neutron powder
diffraction data collected for YBa,Fe;Oyg, along with intensi-
ties computed from the nuclear model in Table I and from the
magnetic model in Figure 3.

TABLE I. Atom positions as fractional coordinates for YBa,Fe;Og. The space group is Pmmm and approximate
lattice constants are a=3.925 A, b=3.907 A, c=11.786 A.

Element Label X y V4 Multiplicity Occupancy
Y Y1 12 172 12 1 1

Ba Bal 172 12 0.167 2 1

Fe Fel 0 0 0 1 1

Fe Fe2 0 0 0.34 2 1

(0) Ol 0 0 0.181 2 1

(0) 02 12 0 0.383 2 1

(0) 03 0 172 0.380 2 1

(0) 04 0 172 0 1 0.853

(0) 05 172 0 0 1 0.978
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Figure 3. Spin orientations for YBa,Fe;Og. Spin directions are shown as
arrows, with spins parallel to a in black and antiparallel spins in gray. The
Fel atoms are in the top, bottom, and central planes. The unit cell for this
structure represents a doubling of each lattice constant of the nuclear cell,
which is shown in Fig. 2. The magnetic cell and nuclear cell are the outer
and inner outlined boxes, respectively.

lll. ASSIGNMENT OF MAGNETIC SYMMETRY

The magnetic structure can be described as a 2 X2 X2
expansion of the Pmmm cell, where the lattice points in the
original cell populate either lattice points, edge centers, face
centers, or body centers in the new lattice (edge and face
centers occur on all axes). The edge centers and body center
would have red (inverting symmetry), while the face centers
are black. The addition of seven centering operations to the
identity operator increases all site multiplicities eightfold,
which offsets the eight-fold (2 X2X2) increase in cell vol-
ume relative to the nuclear cell description. Thus, in this
description, with edge, face, and body centers, the asymmet-
ric unit volume in the nuclear and magnetic cell can be the
same.

Since GSAS does not at present support edge centers, we
must find a description without them. We can do this with
only the black face centers. Since we have lost one-half of
the centering operations, the magnetic asymmetric unit will
be at least double that of the nuclear asymmetric unit. Since
Fmmm is a maximal isomorphic subgroup of Pmmm with all
axes doubled, choosing this space group will lead to the least
reduction in symmetry (Billiet et al., 2004). So, we are pre-
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Figure 4. Observed and simulated neutron powder diffraction data for
YBa,Fe;04. A section of observations is shown in the lower plot, while
intensities simulated considering magnetic diffraction and nuclear scattering
separately are shown above. The magnetic intensities are marked with
crosses; note their much faster decrease in strength.

sented with the task of finding the color space group descrip-
tion of the spin arrangement in Fmmm. The primary symme-
try operators in this space group are the three mirror planes
that are perpendicular to the a, b, and ¢ axes, so the colors of
these operators must be determined. It should be noted that
the Fel atoms lie on all three of these mirror planes and the
Fe2 atoms lie on the mirror planes perpendicular to both a
and b (m, and m,, respectively).

The reader is directed to papers by either Donnay et al.
(1958) or Cox (1972) for a valuable general presentation on
how colored symmetry operations affect spin directions.
However, the case of mirror planes is fairly straightforward.
A black mirror plane will preserve the component of spin
that is perpendicular to the mirror plane, while inverting the
components parallel to the plane. A red antimirror plane will
invert any component of spin that is perpendicular to the
mirror plane, while preserving the components parallel to the
plane. This means that an atom lying on a black mirror plane
can only have a magnetic moment perpendicular to the
plane, as illustrated in Figure 5. Likewise, an atom lying on
a red antimirror plane may not have a moment component
outside the plane. Since the Fel atoms have moments in the
+a direction and lie on the my and m, mirror planes, where
the magnetic spin is contained in each plane, the color for
both operators must be red. Similarly, for both Fel and Fe2,
the spin is perpendicular to the m, plane, so the m, operator

A B

Figure 5. Restrictions on operator color when spins are located on a mirror
plane. In case A, the spin is perpendicular to the mirror plane, so the current
loop is contained in the plane; the mirror must have black (noninverting)
symmetry. In case B, the spin is contained in the plane and the loop is
perpendicular to the mirror plane; the mirror must have red (inverting) sym-
metry.
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TABLE II. Fractional coordinates for YBa,Fe;Oyg in supergroup Fmmm.

Element Label X Y z Multiplicity Occupancy
Y Y1 1/4 1/4 1/4 8 1
Ba Bal 1/4 1/4 0.167/2 16 1
Fe Fela 0 0 0 4 1
Fe Felb 0 0 172 4 1
Fe Fe2a 0 0 0.34/2 8 1
Fe Fe2b 0 0 1/2-(0.34/2) 8 1
(0) Ola 0 0 0.181/2 8 1
(0) Olb 0 0 (0.181/2)-1/2 8 1
(0) 02 1/4 0 0.383/2 16 1

O 03 0 1/4 0.380/2 16 1
(0) 04 0 1/4 0 8 0.853
o) 05 1/4 0 0 8 0.978

color must be black. Thus, the Shubnikov symmetry must be
Fmm’m’. Note that the black m, operator is inconsistent with
any magnetic moment in the b or ¢ directions for both Fel
and Fe2, thus these moments are locked along the +a direc-
tion.

The remaining task is to determine the locations of the
magnetic atoms in this transformed lattice. In the general
case, the transformation matrix that is applied to the unit-cell
vectors, as well as any offset to the origin, must be deter-
mined. The inverse of this matrix is then applied to the frac-
tional coordinates, followed by addition of the origin offset
in order to obtain the fractional coordinates in the new set-
ting. In the case where the asymmetric unit increases, it is
also necessary to identify the atoms that must be repeated in
the new model. This can be done intelligently by determining
the identity of the symmetry element(s) that are lost in the
transform and then transforming the positions both with and
without application of that symmetry, or by brute force by
transforming the contents of multiple units cells to the new
setting, determining which sets of atoms are related by sym-
metry, and then retaining only one position from each set.

In this case, where the axes relationships are trivial and
there is no origin offset, it is easy to perform the coordinate
transformation. Slightly more thought is needed to determine
a set of atoms to make up an asymmetric unit in the new
setting; the coordinates for one choice are provided in Table
II. These were obtained by applying symmetry operations to
the asymmetric unit contents in Pmmm, applying unit cell
translations to generate all atoms in the Fmmm unit cell,
transforming the coordinates to the larger cell, and then test-
ing each generated position to determine which positions are
symmetry-related in the Fmmm setting. The spins needed to

TABLE III. Fractional coordinates and moment for the magnetic atoms in
space group Fmm’m’. Moments are in the a direction. The z coordinate is
expressed in terms of the atom position (zp=0.34) in the Pmmm nuclear
structure.

Label X Y z Moment
Fela 0 0 0 3.5up
Felb 0 0 172 -35uy
Fe2a 0 0 zpl2 -3.5up
Fe2b 0 0 1/2—-zp/2 3.5up

construct the magnetic scattering are shown in Table III.
Likewise, for the GSAS model where no magnetic symmetry
will be applied, a list of all magnetic atoms in the unit cell is
needed. These can be obtained by applying the Fmmm sym-
metry operations to the atom positions in Table II to obtain
the coordinates shown in Table IV.

It may occur to the reader that the spins can be described
in a primitive unit cell (constructed from vectors from the
origin to the three face centers) or a body-centered unit cell
(constructed from the face centers in one plane without
changing the lattice in the perpendicular direction). It should
be noted that these cells have triclinic and monoclinic sym-

TABLE IV. Fractional coordinates and moment for all magnetic atoms in
the 2 X2 X 2 expanded unit cell (space group P1). Magnetic moments are in
the a direction and have units of up. The z coordinates are computed as-
suming the Fe2 atom position has z=0.34 in the Pmmm parent structure.

Label X y z Moment
Felal 0 0 0 35
Fela2 172 172 0 35
Fela3 172 0 172 35
Fela4 0 172 172 35
Felbl 0 0 172 -3.5
Felb2 172 172 172 =35
Felb3 172 0 0 =35
Felb4 0 12 0 -3.5
Fe2al 0 0 0.17 =35
Fe2a2 172 172 0.17 =35
Fe2a3 0 0 -0.17 =35
Fe2a4 172 12 -0.17 -3.5
Fe2a5 172 0 0.33 =35
Fe2a6 0 172 0.33 -3.5
Fe2a7 0 172 -0.33 =35
Fe2a8 172 0 -0.33 -3.5
Fe2bl 172 0 0.17 35
Fe2b2 0 172 0.17 35
Fe2b3 172 0 -0.17 35
Fe2b4 0 172 —0.17 35
Fe2b5 0 0 0.33 35
Fe2b6 172 172 0.33 35
Fe2b7 0 0 -0.33 35
Fe2b8 172 172 -0.33 35
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metry, respectively, and will thus not reflect the higher lattice
symmetry of the magnetic and nuclear models.

IV. FITTING MAGNETIC STRUCTURES

Since magnetic scattering occurs from a separate mecha-
nism than nuclear scattering, computation of these two parts
of the total diffraction can be performed separately. GSAS
allows a crystallographic phase to be used for the computa-
tion of nuclear scattering, magnetic scattering, or both. This
allows a magnetic system to be modeled via a number of
approaches. In the following sections, three different ap-
proaches to modeling the same system will be used. In the
first two examples, a crystallographic phase that provides
only nuclear scattering will be modeled with the observed
crystallographic symmetry, Pmmm. The magnetic phase will
be modeled in two different ways: In the first example, the
full color space group symmetry will be used in a second
phase that will be used for magnetic scattering computation
only. Only the atoms that scatter magnetically (Fel and Fe2)
need to be included in this phase. Some constraints will be
required in this example to keep atomic positions and lattice
constants comparable between these phases. The second ex-
ample will be much like the first, except that no symmetry
will be used to model the magnetic phase. This approach is
cumbersome, in that many additional constraints are needed
to prevent correlation from redundant parameters when re-
fining models. However, it can be very helpful for exploring
magnetic intensities produced by different magnetic models,
and refinements can be easy to perform with simpler sys-
tems.

The final example will use a single structural phase for
both the nuclear and magnetic scattering components. This
requires expansion of the nuclear structure to the Fmmm unit
cell and an understanding of how the site symmetry require-
ments in Pmmm are relaxed in Fmmm so that appropriate
constraints can be applied to the crystallographic phase. This
example is probably the simplest approach for this system.

Ideally, before beginning the fit of a magnetic material,
the nuclear structure will have been investigated under con-
ditions where there is no magnetic scattering. Most com-
monly, this is done using data that are collected at elevated
temperature, or by using X-ray diffraction. For the examples
presented here, this has already been done, and these results
are reported in Table I. This step is not always needed. The
first step in all three of the examples presented here is to
refine a model that contains only a nuclear scattering phase.
These models provide a reasonable fit, which is quite accept-
able as a starting model for the magnetic refinement. The
second step in each example is then to introduce the mag-
netic scattering. The third step is to refine the magnetic pa-
rameters. The following sections outline the steps used to
perform the refinements using each approach. Where a step
can be performed with EXPGUI, the step is described sim-
ply. For steps that require the EXPEDT program, the actual
EXPEDT commands are included in square brackets, where
the symbol “.” indicates a blank line. A set of accompanying
web pages go through the same steps, but provide consider-
ably more detail (see http://www.ncnr.nist.gov/xtal/software/
magtut).
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It is worth noting that in all of these examples, the mod-
els used have symmetry-related but nominally independent
parameters. For example, all of the Fe2 atoms in Tables II or
IIT are generated from a single atom site. The data do not
support independent refinement of the atomic parameters for
the positions generated with lower symmetry. If the attempt
is made to refine two (or more) parameters that are indistin-
guishable, then the GSAS refinement software (GENLES)
will recognize the redundancy and will select only one of the
related parameters to be refined. On occasion, round-off er-
rors can cause symmetry-related parameters to have nearly
identical but slightly differing effects on the fit. In this case,
the Hessian matrix is nearly singular and the least-squares
algorithm computes extremely large shifts to be applied to
the parameters, again due to round-off error in the matrix
inversion. Usually when this occurs, the fit becomes substan-
tially degraded in each cycle of refinement. In some cases,
the parameter changes are large enough to cause GENLES to
crash or to generate parameter values that are so large or
small that subsequent GSAS programs cannot be run. It is
the user’s responsibility to devise constraints to group these
duplicated parameters or make sure that they are not refined.

A. Approach 1: Two-phase fit using magnetic
symmetry

The first step in this approach is to establish a model for
the nuclear scattering in space group Pmmm using the coor-
dinates in Table I and the neutron diffraction data. The fol-
lowing steps are used:

1. In EXPGUI, input the Pmmm nuclear coordinates.

Input the neutron diffraction data and instrument param-
eter files.

Fit the background and scale factor.

Add lattice parameters to fit.

Add the 26 zero correction to fit.

Use constraints to group U,,, parameters for like atoms.
Fit structural parameters (coordinates, Ui, values and,
where appropriate, fractional occupancies) as well as the
background, scale, lattice, and 26 zero.

»

Nounkw

Then, a second phase in space group Fmmm is added to
treat the magnetic scattering, constraints are added and the
model is refined:

8. Input a new phase with the four Fe atom positions in
Fmmm symmetry shown in Table III. As the information
is entered, the cell parameters and Fe2 coordinates are
updated to be consistent with the refinement from the
Pmmm structure.

9. In EXPEDT, change the flag on the second phase to be
magnetic-only [P P M 2 C].

10. Enter the color flags for the two red magnetic symmetry
operations [L A P 2 M S C 2 C 3], and set moments for
the atoms in phase 2 [LAP2MM1 3.5M2
-3.5M3 -3.5M4 3.5].

11. Check/input the magnetic form factor [L F M FE
+3 C .3972 13.244 .6295 4.903 —-.0313 .350
0 .0044 N U]. Note that magnetic form factors depend
strongly on the atom valence (Brown, 1995).

12. Constrain the unit-cell parameters between the two
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phases [LOLKTI1,RM11,42,RM11,1.1 711,
RM22,4 2,RM22,1. T 1,RM33,4 2,RM33,1.1].
Note that these constraints are applied to the reciprocal
lattice tensor, where RM11=a"?, etc., so these con-
straints are related to the inverse of the square of the
ratio of the lattice constants.

13. In EXPGUI, constrain the magnetic Fe atoms to have the
same position (Fe2a is shifted by 0.5 relative to Fe4, and
Fe2b is shifted by —0.5 relative to Fe4); constrain Ui,
for all Fe atoms in both phases to be the same.

14. Set the magnetic scattering phase fraction to be one-
eighth that of the nuclear phase in EXPGUI, since there
are eight times as many atoms in each unit cell of the
magnetic phase.

15. Add flags for refinement of the second phase (lattice
parameters, coordinates, and U, parameters) and refine.

16. Constrain the profile terms to be the same between the
two phases; refine adding GU, GV, and GW (U,V, and
W) to the model.

17. In EXPEDT, constrain the four Fe magnetic moments to
be the same (allowing for the differences in direction)
and then set the refinement flag for the magnetic Fe at-
oms [LAP2V 1:4M]; refine with these additional
parameters.

B. Approach 2: Two-phase fit without magnetic
symmetry

The initial steps in this approach are identical to Steps
1-7 in Approach 1. However, all the magnetic atoms in the
expanded unit cell are entered to avoid use of color symme-
try. The subsequent treatment differs from Approach 1, as
significantly more constraints are needed to perform fitting:

8. In EXPGUI, input a new phase with the 24 Fe atoms
positions as supplied in Table IV. The cell parameters for
this phase are updated to be consistent with the Pmmm
structure. The position of atom Fe2 in the Pmmm phase is
reset to be consistent with the corresponding atoms in the
magnetic phase.

9. In EXPEDT, change the flag on the second phase to be
magnetic only [P P M 2 C].

10. Enter the color editing menu [L, A M S X] (no changes
are directly made by this action, but magnetic intensities
will not be computed for the phase if this step is omit-
ted). Then, set moments for the atoms in phase 2
[LaAP2MM13.5M23.5M33.5... M24 3.5].

I1. Check/input the magnetic form factor [L F M FE
+3 C .3972 13.244 .6295 4.903 —-.0313 .350
0 .0044 N U].

12. Constrain the unit-cell parameters between the two
phases and “hold” the unit-cell angles for the magnetic
cell (since they are not constrained by symmetry)
[LoOLKTI1,RM11,4 2,RM11,14 I 1,RM22,4 2,
rRM22,1JT 1,RM33,4 2,RM33,1J X I FRMI2 T
RM13 I RM23].

13. In EXPGUI, constrain the magnetic Fe atoms to have the
same position (atoms at z=0.17 and z=-0.33 shift at
50% of Fed, while atoms at z=—0.17 or z=0.33 shift at
—50% of Fe4). Constrain all Fe atoms in both phases to
have the same U, value.

14. In EXPEDT, fix the x and y parameters of the Fe atoms,
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since they are not fixed by symmetry
[LAP2FIOXIO9YII0OXTI10Y...T247Y].

15. Set the magnetic scattering phase fraction to be one-
eighth that of the nuclear phase in EXPGUI, since there
are eight times as many atoms in each unit cell of the
magnetic phase.

16. Add flags for refinement of the second phase (lattice
parameters, coordinates, and Uy, parameters) and fit.

17. Constrain the profile terms to be the same between the
two phases; refine adding GU, GV, and GW (U.,V, and
W) to the model.

18. In EXPEDT, constrain the 24 Fe magnetic moments to
be the same (allowing for the differences in direction).
Set the refinement flag for the magnetic Fe atoms. Delete
the holds on the magnetic Fe atom x and y coordinates
(because GSAS only allows 72 atom parameters to be
fixed; use of more causes EXPEDT to crash with no
error message). Then, input holds on the moment com-
ponents in the y and z directions
[LAP2VI1:24MFD1:32TI1MYI1MZTI2MY
...T 24 MZ]. In EXPGUI, turn off the coordinate refine-
ment flag for the Fe atoms in both phases. Refine with
these additional parameters.

C. Approach 3: Single-phase fit with magnetic
symmetry

In this example, the nuclear scattering is modeled using
a supergroup. This requires some extra work in setting up
constraints and in fixing parameters for the initial fit, but
simplifies the effort of modeling the magnetic scattering. The
first step in this approach is to determine the asymmetric unit
for the supergroup structure, which is given in Table IV, and
to determine the parameters that are linked in the model, as
well as the parameters that must be fixed because symmetry
in the parent group does not allow them to be varied. The
following steps are then used to perform the refinement:

1. In EXPGUI, input the Fmmm nuclear coordinates.

2. Input the neutron diffraction data and instrument param-

eter files.

Fit the background and scale factor.

Add lattice parameters to the fit.

Add the 26 zero correction to the fit.

Use constraints to group Ui, parameters for like atoms;

constrain the z parameters for Fe2a and Fe2b so that the

atoms move in opposite directions and for O 1a and O 1b

so the atoms move in the same direction. Finally, using

EXPEDT, fix the nonzero parameters for the remaining

four Oatoms [LAFIO9OXI10YI11vYTI12X].

7. In EXPGUI, fit structural parameters (coordinates, U,
values, and, where appropriate, fractional occupancies) as
well as the background, scale, lattice, and 26 zero.

s W

Then, magnetic scattering is enabled and the model is
refined:

8. In EXPEDT, change the flag to include nuclear and mag-
netic scattering [P P M 1 B].

9. Enter the color flags for the two red magnetic symmetry
operations [L AM S C 2 C 3], and set moments for the
atoms [LAMM3 3.5M4 -3.5M5 -3.5M6 3.5].
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10. Check/input the magnetic form factor [L F M FE
+3 C .3972 13.244 .62954.903 —.0313 .350
0.0044 N U].

11. Refine using EXPGUI, now including magnetic scatter-
ing (but no extra refined parameters).

12. Refine adding GU, GV, and GW (U,V, and W) to the
model.

13. In EXPEDT, constrain the magnetic moments of the four
Fe atoms to be the same (allowing for the differences in
direction), and then set the refinement flag for the mag-
netic Fe atoms [ A P 2 V 1:4 M]; refine with these ad-
ditional parameters.

V. VERIFYING AND VISUALIZING MAGNETIC
STRUCTURES

When using any crystallographic software, an important
step is the verification that the supplied input generates the
desired structure. For nuclear structures, this is usually done
by checking interatomic distances and angles and by visual-
izing the structure. A similar check should be performed with
magnetic structures and symmetry. The following examples
show mechanisms for doing this. A set of accompanying web
pages go through the same steps, but provide considerably
more detail (see http://www.ncnr.nist.gov/xtal/software/
magtut).

A. Listing generated spins

To verify the spin directions for all magnetic atoms gen-
erated from symmetry, a routine has been added to the GSAS
GEOMETRY program that lists the positions and magnetic
vector components for the entire unit cell contents. This pro-
gram can be accessed from the EXPGUI results menu.

Typical GEOMETRY input is:

1. Do not list the asymmetric unit contents for the initial
phase [N].

2. Select the magnetic spin listing [M].

3. Choose a phase [P 2] (this step is omitted when only one
phase is present).

4. Do not list the asymmetric unit contents for the selected
phase [N].

5. Exit the program [X].

B. Visualizing spins with VRSTPLOT

To visualize the magnetic spin directions, the program
VRSTPLOT in GSAS can be used to generate a VRML
graphics file that can then be visualized in a special viewer.
The version of VRML (1.0) used by VRSTPLOT has been
superceded, first by VRML97 (also called VRML 2.0) and
now by a new standard, X3D. A viewer for VRML is not
distributed with GSAS—in fact, one of the authors (B. H. T.)
has been unable to locate a compatible viewer for OS X on
the Macintosh, but has had success with an inexpensive pro-
gram that converts VRML 1.0 files to VRML97 (http://
www.parallelgraphics.com/products/converter97). For Win-
dows, two freely distributed viewers that have been known
to work with the VRML files produced by VRSTPLOT are:
VRweb (http://www.ccpl4.ac.uk/cep/cepl4/ftp-mirror/gsas/
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public/gsas/windows/vrweb.exe, http://www?2.iicm.edu/
vrweb) and CosmoPlayer (http://ovrt.nist.gov/cosmo). More
information on VRML viewers is available from the Web3D
consortium  (http://www.web3d.org); their web page of
VRML  viewers  (http://www.web3d.org/x3d/vrml/tools/
viewers_and_browsers) is extensive. Once a VRML browser
has been installed, creation of VRML files with VRSTPLOT
is relatively simple, as outlined below.
Input for a typical VRSTPLOT run is:

1. Select a phase [2] (this step is omitted when only one
phase is present).

2. Enter the submenu to designate the atoms that will be
plotted [A].

3. Add atoms to the view by designating a range of unit cell
coordinates [U].

4. Use atoms 1 through 4 that fall between fractional coor-
dinates 0 and 1 on all three axes [1:4 0 1 0 1 0 1].

5. Exit from add atoms menu [X].

6. Draw the unit cell boundary in the plot [U].

C. Visualizing spins with DRAWXxtl

To visualize the magnetic spin directions, input can also
be created for the DRAWxtl program (Finger et al., 2005)
DRAWxtl is freely available for all platforms where GSAS
runs and can directly display graphics on a computer screen.
The program can also create either VRML 1.0 or VRML97
files, as well as input for POVRAY, which can be used to
create very high quality, ray-traced, graphics output.

Input can be generated for the DRAWXxtl program using
a menu available in the EXPGUI Import/Export menu under
the Coordinate Export submenu. From this menu, several
options for display of atoms and magnetic spins can be se-
lected, as shown on the accompanying web pages. Many
additional display options are available within the DRAWxtl
GUI, and even more capabilities are available by editing the
DRAWxtl input file directly.

VI. CONCLUSIONS

This article has shown three different approaches to
modeling magnetic scattering using GSAS. The best ap-
proach to use will likely depend on the complexity of the
material being studied. Researchers doing extensive work
with magnetic scattering will likely want to master the Full-
Prof program, but in many cases, such as the one shown
here, GSAS offers an easy way to get started with magnetic
refinements.
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